Proceedings of The National Academy of Sciences (PNAS)

Early detection of infant neuromotor pathologies is critical for timely therapeutic interventions that rely on early-life neuroplasticity. Traditional assessments rely on subjective expert evaluations or specialized medical facilities, making them challenging to scale in remote and/or resource-constrained settings. The results presented here aim to democratize these evaluations using wireless networks of miniaturized, skin-integrated sensors that digitize movement behaviors and vital signs of infants in a cost-effective manner. The resulting data yield full-body motion reconstructions in the form of deidentified infant avatars, along with a range of important cardiopulmonary information. This technology approach enables rapid, routine evaluations of infants at any age via an engineering platform that has potential for use in nearly any setting across developed and developing countries alike.

Next
Next

Karger